Сложение понятий — это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой все элементы объемов исходных понятий. Например, при сложении понятий «школьник» (Ш) и «спортсмен» (С) образуется новое понятие, в объем которого входят как все школьники, так и все спортсмены.

Результат сложения понятий, часто называемый логической суммой, на схеме Эйлера изображается штриховкой .

Умножение понятий — это логическая операция объединения двух и более понятий, в результате которой образуется новое понятие с объемом, охватывающим собой только совпадающие элементы объемов исходных понятий. Например, при умножении понятий «школьник» (Ш) и «спортсмен» (С) образуется новое понятие, в объем которого входят только школьники, являющиеся спортсменами, и спортсмены, являющиеся школьниками. Результат умножения понятий, часто называемый логическим произведением, на схеме Эйлера изображается штриховкой (так же, как и результат сложения).

Мы привели примеры сложения и умножения понятий, которые находятся между собой в отношении пересечения: «школьник» и «спортсмен». При других отношениях между понятиями результаты сложения и умножения (логическая сумма и логическое произведение), разумеется, будут иными. В приводимой таблице   штриховкой показаны результаты сложения и умножения понятий во всех видах отношений между ними.

Результаты сложения понятий во всей первой строке таблицы (в равнозначности, пересечении и подчинении) полностью совпадают с результатами сложения во всей третьей строке таблицы (в соподчинении, противоположности и противоречии). А результаты умножения понятий во всей второй строке таблицы (в равнозначности, пересечении и подчинении), наоборот, полностью не совпадают с ре­зультатами умножения во всей четвертой строке таблицы (в соподчинении, противоположности и противоречии).

Кроме того, результаты сложения понятий, при сравнении их с результатами умножения, полностью совпадают только в случае равнозначности, частично — в пересечении и совершенно не совпадают в соподчинении, противоположности и противоречии (в этих трех случаях результатом умножения является нулевое или пустое понятие). В отношении подчинения результатом сложения является родовое понятие, а умножения — видовое.

Как правило, в естественном языке (том, на котором мы общаемся) результат сложения понятий выражается союзом «или», а умножения — союзом «и». В результате сложения понятий «школьник» и «спортсмен» образуется новое понятие, в объем которого входит любой человек, если он является или школьником, или спортсменом, а в результате умножения этих понятий в объем нового понятия входит любой человек, если он является и школьником, и спортсме­ном одновременно.

О возможных разночтениях при употреблении союзов «или» и «и» говорит Виталий Иванович Свинцов в своём учебнике по логике: «Что касается союзов «или» и «и», то нужно отметить их многозначность, способную в известных ситуациях создавать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил пользования городским транспортом: «Безбилетный проезд и бесплатный провоз багажа наказывается штрафом»? Представим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них войдут пассажиры, не взявшие билета, в другое — не оплатившие провоз багажа. Если союз «и» рассматривать как показатель логического умножения, то придется признать, что штраф должен быть наложен только на тех пассажиров, которые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмотренной данным правилом, настолько ясен, что всякие разночтения этой формулировки, вероятно, были бы признаны казуистикой, но все же использование союза «или» здесь следует признать предпочтительным».

Проверьте себя:

Добавить комментарий

Войти с помощью: