Умозаключения, которые содержат в себе разделительные, (дизъюнктивные) суждения называются разделительными. В мышлении и речи часто используется разделительно-категорический силлогизм, в котором, как явствует из названия, первая посылка представляет собой разделительное (дизъюнктивное) суждение, а вторая посылка – простое (категорическое). Например:
Учебное заведение может быть начальным, или средним, или высшим.
МГУ является высшим учебным заведением.
МГУ – это не начальное и не среднее учебное заведение.
Разделительно-категорический силлогизм имеет два модуса:
- Утверждающе-отрицающий модус, у которого первая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая утверждает один из них, а вывод отрицает все остальные (таким образом, рассуждение движется от утверждения к отрицанию). Например:
Леса бывают хвойными, или лиственными, или смешанными.
Этот лес хвойный.
Этот лес не лиственный и не смешанный.
С помощью условных обозначений логических союзов можно представить форму данного силлогизма в виде следующей записи:
((а V в V с) Λ а)→(¬ в Λ ¬ с),
где (а V в V с) – это первая посылка в виде строгой дизъюнкции трех простых суждений;
а – это вторая посылка в виде утверждения одного из них;
((а V в V с) Λ а) – это две посылки силлогизма, соединенные знаком конъюнкции;
(¬ в Λ ¬ с) – это вывод силлогизма в виде конъюнкции отрицаний двух оставшихся простых суждений, входивших в первую посылку; знак импликации «→» показывает, что из посылок следует вывод.
- Отрицающе-утверждающий модус, у которого первая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая отрицает все данные варианты, кроме одного, а вывод утверждает один оставшийся вариант (таким образом, рассуждение движется от отрицания к утверждению). Например:
Люди бывают европеоидами, или монголоидами, или негроидами.
Этот человек не монголоид и не негроид.
Этот человек является европеоидом.
С помощью условных обозначений логических союзов можно представить форму данного силлогизма в виде следующей записи:
((а V в V с) Λ (¬ в Λ ¬ с)) → а,
где (а V в V с) – это первая посылка в виде строгой дизъюнкции трех простых суждений;
(¬ в Λ ¬ с) – это вторая посылка в виде конъюнкции отрицаний двух из них;
(а V в V с) Λ (¬ в Λ ¬ с) – это две посылки силлогизма, соединенные знаком конъюнкции;
а – это вывод силлогизма в виде утверждения третьего простого суждения, входившего в первую посылку; и наконец, импликацией объединяются посылки и вывод силлогизма.
Первая посылка разделительно-категорического силлогизма является строгой дизъюнкцией, т. е. представляет собой уже знакомую нам логическую операцию деления понятия. Поэтому неудивительно, что правила этого силлогизма повторяют известные нам правила деления понятия:
- Деление в первой посылке должно проводиться по одному основанию. Например:
Транспорт бывает наземным, или подземным, или водным, или воздушным, или общественным.
Пригородные электропоезда – это общественный транспорт.
Пригородные электропоезда – это не наземный, не подземный, не водный и не воздушный транспорт.
Силлогизм построен по утверждающе-отрицающему модусу: в первой посылке представлено несколько вариантов, во второй посылке один из них утверждается, в силу чего в выводе отрицаются все остальные. Однако из двух истинных посылок вытекает ложный вывод. Почему так получается? Потому что в первой посылке деление проводилось по двум разным основаниям: в какой природной среде передвигается транспорт и кому он принадлежит. Подмена основания деления в первой посылке разделительно-категорического силлогизма приводит к ложному выводу.
- Деление в первой посылке должно быть полным. Например:
Математические действия бывают сложением, или вычитанием, или умножением, или делением.
Логарифмирование – это не сложение, не вычитание, не умножение и не деление.
Логарифмирование – это не математическое действие.
В силлогизме неполное деление в первой посылке обусловливает ложный вывод, вытекающий из истинных посылок.
- Результаты деления в первой посылке не должны пересекаться, или дизъюнкция должна быть строгой. Например:
Страны мира бывают северными, или южными, или западными, или восточными.
Канада – это северная страна.
Канада – это не южная, не западная и не восточная страна.
В силлогизме вывод является ложным, т. к. Канада в такой же степени северная страна, в какой и западная. Ложный вывод при истинных посылках объясняется в данном случае пересечением результатов деления в первой посылке, или, что одно и то же, – нестрогой дизъюнкцией. Следует отметить, что нестрогая дизъюнкция в разделительно-категорическом силлогизме допустима в том случае, когда он построен по отрицающе-утверждающему модусу. Например:
Он силен от природы или же постоянно занимается спортом.
Он не является сильным от природы.
Он постоянно занимается спортом.
В силлогизме нет ошибки, несмотря на то, что дизъюнкция в первой посылке была нестрогой. Таким образом, рассматриваемое правило безоговорочно действует только для утверждающе-отрицающего модуса разделительно-категорического силлогизма.
- Деление в первой посылке должно быть последовательным. Например:
Предложения бывают простыми, или сложными, или сложносочиненными.
Это предложение сложносочиненное.
Это предложение не простое и не сложное.
В силлогизме ложный вывод следует из истинных посылок по той причине, что в первой посылке был допущен скачок в делении.
Разделительно-категорический силлогизм в логике часто называют просто разделительно-категорическим умозаключением. Помимо него существует также чисто разделительный силлогизм (чисто разделительное умозаключение), обе посылки и вывод которого являются разделительными (дизъюнктивными) суждениями. Например:
Зеркала бывают плоскими или сферическими.
Сферические зеркала бывают вогнутыми или выпуклыми.
Зеркала бывают плоскими, или вогнутыми, или выпуклыми.
Форму приведенного чисто разделительного силлогизма можно представить следующим образом:
((а V в) Λ (в1 V в 2)) → (а V в1 V в 2)) ,
где (а V в) – первая посылка;
(в1 V в 2) – вторая посылка;
(а V в1 V в 2) – вывод.