Умозаключения, которые содержат в себе условные (импликативные) суждения называются условными. В мышлении и речи часто используется условно-категорический силлогизм, название которого свидетельствует о том, что в нем первая посылка является условным (импликативным) суждением, а вторая посылка – простым (категорическим). Например:
Если взлетная полоса покрыта льдом, то самолеты не могут взлетать.
Сегодня взлетная полоса покрыта льдом.
Сегодня самолеты не могут взлетать.
Условно-категорический силлогизм имеет два модуса:
- Утверждающий модус, у которого первая посылка представляет собой импликацию, состоящую, как мы уже знаем, из двух частей – основания и следствия, вторая посылка является утверждением основания, а в выводе утверждается следствие. Например:
Если вещество – металл, то оно электропроводно.
Данное вещество – это металл.
Данное вещество электропроводно.
Форма утверждающего модуса условно-категорического силлогизма:
((а → в) Λ а) → в,
где (а → в) – это первая посылка в виде импликации основания и следствия;
((а → в) Λ а) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и утверждения основания;
в – это вытекающий из посылок вывод силлогизма в виде утверждения следствия.
- Отрицающий модус, у которого первая посылка представляет собой импликацию основания и следствия, вторая посылка является отрицанием следствия, а в выводе отрицается основание. Например:
Если вещество – металл, то оно электропроводно.
Данное вещество неэлектропроводно.
Данное вещество – не металл.
Форма отрицающего модуса условно-категорического силлогизма:
((а → в) Λ ¬ в) → ¬ а,
где (а → в) – это первая посылка в виде импликации основания и следствия;
((а → в) Λ ¬ в) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и отрицания следствия;
¬ а – это вытекающий из посылок вывод силлогизма в виде отрицания основания.
Необходимо обратить внимание на уже известную нам особенность импликативного суждения, которая состоит в том, что основание и следствие нельзя поменять местами. Например, высказывание: «Если вещество – металл, то оно электропроводно», – является верным, т. к. все металлы – это электропроводники (из того, что вещество – металл, с необходимостью вытекает его электропроводность). Однако высказывание: «Если вещество электропроводно, то оно – металл», – неверно, т. к. не все электропроводники являются металлами (из того, что вещество электропроводно, не вытекает то, что оно – металл). Эта особенность импликации обусловливает два правила условно-категорического силлогизма:
- Утверждать можно только от основания к следствию, т. е. во второй посылке утверждающего модуса должно утверждаться основание импликации (первой посылки), а в выводе – ее следствие. В противном случае из двух истинных посылок может вытекать ложный вывод. Например:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
Слово «Москва» надо писать с большой буквы.
Слово «Москва» всегда стоит в начале предложения.
В силлогизме во второй посылке утверждалось следствие, а в выводе – основание: ((а → в) Λ в) → а. Это утверждение от следствия к основанию и является причиной ложного вывода при истинных посылках.
- Отрицать можно только от следствия к основанию, т. е. во второй посылке отрицающего модуса должно отрицаться следствие импликации (первой посылки), а в выводе – ее основание. В противном случае из двух истинных посылок может вытекать ложный вывод. Например:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
В данном предложении слово «Москва» не стоит в начале.
В данном предложении слово «Москва» не надо писать с большой буквы.
В силлогизме во второй посылке отрицается основание, а в выводе – следствие: ((а → в) Λ ¬ а) → ¬ в. Это отрицание от основания к следствию и является причиной ложного вывода при истинных посылках.
Вспомним, что среди сложных суждений помимо импликации: а → в, есть также эквиваленция: а ↔ в. Если в импликации всегда выделяется основание и следствие, то в эквиваленции нет ни того, ни другого, т. к. она представляет собой сложное суждение, обе части которого тождественны (эквивалентны) друг другу. Если первой посылкой силлогизма является не импликация, а эквиваленция, то такой силлогизм называется эквивалентно-категорическим. Например:
Если число четное, то оно делится без остатка на 2.
Число 16 – четное.
Число 16 делится без остатка на 2.
Форма модуса данного силлогизма: (а ↔ в) Λ а) → в.
Поскольку в первой посылке эквивалентно-категорического силлогизма нельзя выделить ни основания, ни следствия, то рассмотренные выше правила условно-категорического силлогизма к нему неприменимы (в эквивалентно-категорическом силлогизме и утверждать, и отрицать можно как угодно). Если в условно-категорическом силлогизме два модуса правильных и два неправильных (см. выше), то в эквивалентно-категорическом силлогизме все четыре модуса являются правильными:
((а ↔ в) Λ а) → в;
((а ↔ в) Λ в) → а;
((а ↔ в) Λ ¬ а) → ¬ в;
((а ↔ в) Λ ¬ в) → ¬ а.
Вы без труда сможете подобрать примеры для каждого из четырех модусов эквивалентно-категорического силлогизма.
Если же обе посылки и вывод представляют собой условные суждения, то это чисто условный силлогизм (чисто условное умозаключение). Например:
Если вещество является металлом, то оно электропроводно.
Если вещество электропроводно, то его невозможно использовать в качестве изолятора.
Если вещество является металлом, то его невозможно использовать в качестве изолятора.
Форма модуса данного силлогизма: ((а → в) Λ (в → с)) → (а → с).